
Microbenchmarking on theMicrobenchmarking on the
JVM with JMHJVM with JMH

Daniel Mitterdorfer, comSysto GmbH

@dmitterd

https://twitter.com/dmitterd

AgendaAgenda
Definitions

How to measure performance? What is benchmarking?

Problem

Why are benchmarks on the JVM hard?

Solution

Introduction to the Java Microbenchmarking Harness (JMH)

How to DetermineHow to Determine
Performance?Performance?

Lots of approaches, for example:

Analysis

to determine performance characteristics of a system upfront (e.g. Big-O notation)

Profiling

to find bottlenecks in a system

Benchmarking

to compare the relative performance of systems

Benchmark ScopesBenchmark Scopes
Macrobenchmark

An entire system (application level)

Microbenchmark

A single component

(Mesobenchmark)

Purpose of BenchmarkingPurpose of Benchmarking
Find performance regressions in critical components.

Purpose of BenchmarkingPurpose of Benchmarking
Compare alternative implementations or system configurations

Purpose of BenchmarkingPurpose of Benchmarking
Ultimate purpose: Derive a performance model for a component

Understand why a component behaves performance-wise in
certain way
Understand which "knobs" you can turn

Writing Benchmarks is Easy...Writing Benchmarks is Easy...
Example: How long does it take to calculate the sum of an array?

public class SumBenchmark {

 public static double sum(double[] array) {

 double total = 0.0d;

 for (int i = 0; i < array.length; i++) {

 total += array[i];

 }

 return total;

 }

}

Writing Benchmarks is Easy...Writing Benchmarks is Easy...
public class SumBenchmark {

 private static final int BATCH_SIZE = 15000;

 	

 public static double sum(double[] array) { /* ... */ }

 private static void benchmarkSum(double[] array) {

 long start = System.nanoTime();

 for (int j = 0; j < BATCH_SIZE; j++) {

 sum(array);

 }

 long stop = System.nanoTime();

 System.out.printf("Computation finished in %d ns.%n",

 	 	 	 	 ((stop - start) / BATCH_SIZE));

 }

 public static void main(String[] args) { /* ... */ }

}

Writing Benchmarks is Easy...Writing Benchmarks is Easy...
Benchmarking Scenario: Benchmark with 10.000 array elements

public class SumBenchmark {

 private static final int BATCH_SIZE = 15000;

 public static double sum(double[] array) { /* ... */ }

 private static void benchmarkSum(double[] array) { /* ... */ }

 public static void main(String[] args) {

 double[] array = new double[10000];

 // initialize array with some values

 for (int i = 0; i < array.length; i++) {

 array[i] = (double)i;

 }

 // perform actual benchmark

 for (int iteration = 0; iteration < 10; iteration++) {

 benchmarkSum(array);

 }

}

Writing Benchmarks is Easy...Writing Benchmarks is Easy...

... except when it's not... except when it's not

Computation finished in 11561 ns.

Computation finished in 447 ns.

Computation finished in 0 ns.

Computation finished in 0 ns.

[...]

Computation finished in 0 ns.

0 ns? Really?0 ns? Really?

What happened?What happened?
Rerun with -XX:+PrintCompilation

[...]

123 7 name.mit[...].SumBenchmark::sum (24 bytes)

127 1 % name.mit[...].SumBenchmark::sum @ 4 (24 bytes)

293 2 % name.mit[...].SumBenchmark::benchmarkSum @ 6 (51 bytes)

306 8 java.lang.String::indexOf (166 bytes)

Computation finished in 11561 ns.

313 9 name.mit[...].SumBenchmark::benchmarkSum (51 bytes)

319 2 % name.mit[...].SumBenchmark::benchmarkSum @ -2 (51 bytes) made not entrant

Computation finished in 447 ns.

Computation finished in 0 ns.

Computation finished in 0 ns.

[...]

Computation finished in 0 ns.

The JIT compiler kicks in and eliminates the benchmark loop

Dead Code Elimination - ADead Code Elimination - A
Closer LookCloser Look

 private static void benchmarkSum(double[] array) {

 long start = System.nanoTime();

 for (int j = 0; j < BATCH_SIZE; j++) {

 // (1) The return value is never used, let's eliminate the call
 sum(array);

 }

 long stop = System.nanoTime();

 System.out.printf("Computation finished in %d ns.%n",

 	 	 	 	 ((stop - start) / BATCH_SIZE));

 }

Only illustrative: HotSpot may implement this differently

Dead Code Elimination - ADead Code Elimination - A
Closer LookCloser Look

 private static void benchmarkSum(double[] array) {

 long start = System.nanoTime();

 for (int j = 0; j < BATCH_SIZE; j++) {

 // (2) The loop body is empty, let's eliminate the loop

 }

 long stop = System.nanoTime();

 System.out.printf("Computation finished in %d ns.%n",

 	 	 	 	 ((stop - start) / BATCH_SIZE));

 }

Only illustrative: HotSpot may implement this differently

Dead Code Elimination - ADead Code Elimination - A
Closer LookCloser Look

 private static void benchmarkSum(double[] array) {

 long start = System.nanoTime();

 //(3) Huh, were is the benchmark?

 long stop = System.nanoTime();

 System.out.printf("Computation finished in %d ns.%n",

 	 	 	 	 ((stop - start) / BATCH_SIZE));

 }

Some Sources of PitfallsSome Sources of Pitfalls
JIT-Compiler

Implements dozens of optimizations

Garbage Collector

Runs at unpredictable times

Operating System/JVM

Different implementations will have different performance characteristics

CPU

Singlecore vs. Multicore

Tons of problems you haven't even considered

 and other cache effects, , , branch prediction and many moreFalse sharing timer accuracy CPU's C-states

http://daniel.mitterdorfer.name/articles/2014/false-sharing/
http://btorpey.github.io/blog/2014/02/18/clock-sources-in-linux/
https://access.redhat.com/articles/65410

Haunted by Cliff ClickHaunted by Cliff Click

“Without exception every microbenchmark I've
seen has had serious flaws. Except those I've had

a hand in correcting.”

Java MicrobenchmarkingJava Microbenchmarking
HarnessHarness

Best practices are baked in

Avoids lots of flaws of handwritten microbenchmarks; still no silver bullet

Batteries included

Supports different metrics (called "benchmark modes"), multithreaded tests, parameterized benchmarks,
multiple language bindings (Scala, Groovy, Kotlin), etc.

Open source; developed by experts

OpenJDK subproject (maintainers: Aleksey Shipilёv and Sergey Kuksenko from Oracle)

De-facto standard

Used by JDK developers, growing user base outside of Oracle (e.g. Netty, Reactor, Azul)

Microbenchmarking BestMicrobenchmarking Best
PracticesPractices

Warmup

JMH performs multiple warmup iterations before actual measurement iterations

Mitigate Energy Saving Settings

JMH benchmarks run multiple iterations and do not park benchmarking threads to keep the CPU busy

Compiler optimizations

JMH provides support to avoid or control compiler optimizations

Run-to-run variance

JMH creates multiple JVM forks; variance is reported ("score error")

Hello JMHHello JMH
import org.openjdk.jmh.annotations.Benchmark;

public class HelloJMHMicroBenchmark {

 @Benchmark

 public void benchmarkRuntimeOverhead() {

 //intentionally left blank

 }

}

GeneratingGenerating
HelloJMHMicroBenchmarkHelloJMHMicroBenchmark

Run mvn clean install or gradle shadow
JMH generates a benchmark class for each method annotated
with @Benchmark using its annotation processors
Run the self-contained JAR

RunningRunning
HelloJMHMicroBenchmarkHelloJMHMicroBenchmark

Run progress: 0,00% complete, ETA 00:06:40

[...]

Fork: 1 of 10

Warmup Iteration 1: 1442257053,080 ops/s

[...]

Warmup Iteration 20: 436917769,398 ops/s

Iteration 1: 1462176825,349 ops/s

Iteration 2: 1431427218,067 ops/s

[...]

Run complete. Total time: 00:08:06

Benchmark Mode Samples Score Score error Un
n.m.b.j.H.benchmarkRuntimeOverhead thrpt 200 1450534078,416 29308551,722 op

Benchmarking Array Sum withBenchmarking Array Sum with
JMHJMH

import org.openjdk.jmh.annotations.*;

@State(Scope.Benchmark)

public class SumBenchmark {

 private double[] values;

 @Setup

 public void setup() {

 this.values = new double[10000];

 for (int i = 0; i < values.length; i++) {
 values[i] = (double)i;

 }

 }

 @Benchmark

 public double calculateSum() {

 return sum(values);

 }

}

Running SumBenchmarkRunning SumBenchmark
Run progress: 0,00% complete, ETA 00:06:40

Warmup: 20 iterations, 1 s each

Measurement: 20 iterations, 1 s each

Threads: 1 thread, will synchronize iterations

Benchmark mode: Throughput, ops/time

Benchmark: name.mitterdorfer.benchmark.jmh.SumBenchmark.calculateSum

[...]

Fork: 1 of 10

Warmup Iteration 1: 89162,938 ops/s

Warmup Iteration 2: 91655,330 ops/s

[...]

Run complete. Total time: 00:08:04

Benchmark Mode Samples Score Score error Units

n.m.b.j.SumBenchmark.calculateSum thrpt 200 92684,491 395,882 ops/s

Score based on array size (10.000 elements). Use @OperationsPerInvocation to normalize the reported
throughput if needed.

Complex MicrobenchmarksComplex Microbenchmarks
with JMHwith JMH

@State

Annotate benchmark state scoped to the benchmark, a single benchmark thread or a benchmark group

@Threads

Execute multithreaded microbenchmarks

@CompilerControl

Offers limited control over the JIT compiler's behavior (e.g. inlining of a specific method)

Profilers

Pluggable profilers to observe microbenchmark behavior, e.g. gc, comp, perf

For more information please study the .official JMH samples

http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples/

Microbenchmark LimitationsMicrobenchmark Limitations
Microbenchmarks are not the solution to every performance

problem:

Don't generalize the results of a microbenchmark

Measure different workloads; Measure in an environment as close as possible to production

Don't optimize a component blindly based on a
microbenchmark result

You might be looking in the wrong spot; use profilers to determine bottlenecks

SummarySummary
Microbenchmarks are hard

The JIT compiler, the OS and the CPU are trying to fool you

JMH helps a lot

JMH has the hard problems covered but you can still screw things up. Think whether the results are
plausible.

Microbenchmarks have their limitations

Think in a broader context: Are the results are applicable at all in your situation?

More InformationMore Information
JMH project page:

Aleksey Shipilёv's Blog:

My Blog:
Code:

http://openjdk.java.net/projects/code-
tools/jmh

http://shipilev.net/

http://daniel.mitterdorfer.name
https://github.com/danielmitterdorfer/benchmarking-

talk

http://openjdk.java.net/projects/code-tools/jmh
http://shipilev.net/
http://daniel.mitterdorfer.name/
https://github.com/danielmitterdorfer/benchmarking-talk

Image CreditImage Credit
 by (License:)

 by
(License:)

 by (License:)

Mazda 787B YackNonch by-nc-nd
That is amazing
Picture of Cliff Click
Desperate Ladies, The Lighthouse, Glasgow Gavin White

by-nc-nd
Tunnel Julian Schüngel by-nc-nd

https://www.flickr.com/photos/yacknonchalant/5421267876/sizes/o/
https://www.flickr.com/photos/yacknonchalant/
https://creativecommons.org/licenses/by-nc-nd/2.0/
http://devopsreactions.tumblr.com/post/79958233740/following-up-on-a-user-submitted-bug-and-realizing-we
http://about.me/clickcliff
https://www.flickr.com/photos/gavinkwhite/9105135673/
https://www.flickr.com/photos/gavinkwhite/
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://www.flickr.com/photos/medevac71/4245011262/sizes/o/
https://www.flickr.com/photos/medevac71/
https://creativecommons.org/licenses/by-nc-nd/2.0/

