

JVM Deep DiveJVM Deep Dive
Daniel Mitterdorfer, comSysto GmbHDaniel Mitterdorfer, comSysto GmbH

@dmitterd@dmitterd

https://twitter.com/dmitterd

TopicsTopics
JVM Overview
Interpreter
JIT Compiler
Memory Management

What "is" a JVM?What "is" a JVM?
The JVM is specified in .

There are multiple implementations:
The Java® Virtual Machine Specification

HotSpot
JVM reference implementation; part of OpenJDK and Oracle JDK

Azul Zing
Commercial performance-optimized JVM based on HotSpot with a low-pause GC (C4) and many other
features

J9
Implementation by IBM

JRockit
Implementation by Bea. Now integrated into HotSpot.

...

http://docs.oracle.com/javase/specs/jvms/se8/html/index.html

The HotSpot JVMThe HotSpot JVM

Based on "Java Performance", p. 56

Let's start simpleLet's start simple
What happens between...

public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello World!");
 }
}

... and ...

Hello World!

"Compile""Compile"
javac HelloWorld.java

HelloWorld.class HexdumpedHelloWorld.class Hexdumped
0000000 ca fe ba be 00 00 00 34 00 1d 0a 00 06
0000010 00 10 00 11 08 00 12 0a 00 13 00 14 07
0000020 00 16 01 00 06 3c 69 6e 69 74 3e 01 00
0000030 56 01 00 04 43 6f 64 65 01 00 0f 4c 69
0000040 75 6d 62 65 72 54 61 62 6c 65 01 00 04
0000050 6e 01 00 16 28 5b 4c 6a 61 76 61 2f 6c
0000060 2f 53 74 72 69 6e 67 3b 29 56 01 00 0a
0000070 72 63 65 46 69 6c 65 01 00 0f 48 65 6c
0000080 6f 72 6c 64 2e 6a 61 76 61 0c 00 07 00
0000090 17 0c 00 18 00 19 01 00 0c 48 65 6c 6c
00000a0 6f 72 6c 64 21 07 00 1a 0c 00 1b 00 1c
00000b0 48 65 6c 6c 6f 57 6f 72 6c 64 01 00 10
00000c0 61 2f 6c 61 6e 67 2f 4f 62 6a 65 63 74
00000d0 6a 61 76 61 2f 6c 61 6e 67 2f 53 79 73
00000e0 01 00 03 6f 75 74 01 00 15 4c 6a 61 76
00000f0 6f 2f 50 72 69 6e 74 53 74 72 65 61 6d
0000100 13 6a 61 76 61 2f 69 6f 2f 50 72 69 6e
0000110 72 65 61 6d 01 00 07 70 72 69 6e 74 6c
0000120 15 28 4c 6a 61 76 61 2f 6c 61 6e 67 2f

Welcome to the MatrixWelcome to the Matrix

Structure of a Structure of a .class.class file file

Beware: This is very simplified.

DemoDemo
javap -verbose -c HelloWorld.class

The JVM: A stack-basedThe JVM: A stack-based
machinemachine

int sum = op0 + op1;

↓
20: iload_1
21: iload_2
22: iadd
23: istore_3

Bytecode Execution:Bytecode Execution:
StraightforwardStraightforward

//pseudocode
for(;;) {
 current_byte_code = read_byte_code_at(program_
 switch(current_byte_code) {
 case iadd: handle_iadd(); break;
 case iload_1: handle_iload_1(); break;
 // ...
 }
}

Bytecode Execution: FasterBytecode Execution: Faster
1. Generate assembler code at startup for each bytecode
2. Execute generated code for each bytecode

Better optimized for current hardware, no more bytecode
dispatching in C++

Example: Generated code forExample: Generated code for
iaddiadd

mov eax,DWORD PTR [rsp] ; take parameters
add rsp,0x8
mov edx,DWORD PTR [rsp]
add rsp,0x8
add eax,edx ; add parameters
movzx ebx,BYTE PTR [r13+0x1] ; dispatch next by
inc r13
movabs r10,0x109c72270
jmp QWORD PTR [r10+rbx*8]

Slightly simplified

Take AwaysTake Aways
javac produces .class files which reflect the Java code
.class files contain platform independent byte codes
Inspect .class files with javap
The interpreter is a complex beast

JIT compilationJIT compilation

JIT?JIT?
JIT = Just In Time
"Profile-guided" optimization
Only hot code paths ("hot spots")

Compile TriggersCompile Triggers
Counters in the interpreter:

Method invocation counter
Backedge counter (loop invocations)

JIT Compilation StrategiesJIT Compilation Strategies
Client Compiler (C1)
Faster startup, less compilation overhead, less optimizations

Server Compiler (C2)
Takes time, more aggressive optimizations

Tiered Compilation
First compile with C1, then with C2. Active by default, deactivate with -XX:-TieredCompilation

JIT Compiler and InterpreterJIT Compiler and Interpreter

Runtime ProfilingRuntime Profiling
Invariants: Loaded classes
Statistics: Branches taken
...

OptimizationsOptimizations
Dead Code Elimination
Method Inlining
Class Hierarchy Analysis
...

IntrinsicsIntrinsics
Hand-optimized "shortcuts" for certain JDK methods

Example:Example:
Math#abs(double)Math#abs(double)
return (a <= 0.0D) ? 0.0D - a : a;

x86 Intrinsicsx86 Intrinsics
Math.abs(double)

↓
andpd $dst, [0x7fffffffffffffff]

pp

SafepointsSafepoints
How to "remove" compiled machine code in a busy application?

1. Halt every application thread ("safepoint")
2. Replace machine code with interpreted code

SafepointsSafepoints
Safepoints are used for different tasks in the JVM, for example:

Garbage Collection
Thread Dumps
Deadlock Detection

Embrace the JITEmbrace the JIT
Use short methods (inlining)
Use JDK methods (may use intrinsics)
Use inheritance but take care in performance critical code

Inspecting CompilationInspecting Compilation
Use -XX:+PrintCompilation
Use JITWatch

https://github.com/AdoptOpenJDK/jitwatch

Take AwaysTake Aways
JIT compilation makes Java code fast
JIT compilation relies on runtime information
Cooperation needed between runtime, interpreter and JIT
compiler

MemoryMemory

Memory RegionsMemory Regions
Stack
Each Java thread has its own stack

Heap
One heap for each Java process

Metaspace (Java 8+)
contains class data; native memory, grows unlimited by default

Code Cache
contains JIT compiled code

Garbage CollectorsGarbage Collectors

Memory Management on theMemory Management on the
JVMJVM

1. Object x = new Object();
2. There is no step 2

Garbage Collector TradeoffsGarbage Collector Tradeoffs
Latency
Human-facing systems need fast response times

Throughput
Batch processing systems need more throughput

Memory
Waste as little as possible

Weak Generational HypothesisWeak Generational Hypothesis
Most objects survive for only a short period of time

Source

http://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/generations.html#sthref18

Weak Generational HypothesisWeak Generational Hypothesis
Most GC algorithms are based on this assumption

Split the heap into "generations"
Collect generations separately

Result: Increased GC performance

Heap LayoutHeap Layout
Young Generation
Contains newly instantiated objects

Old Generation (also: Tenured Generation)
Contains older objects that survived multiple garbage collections

Common AlgorithmsCommon Algorithms

Serial GCSerial GC
-XX:+UseSerialGC
Client applications with small heaps (<< 1 GB)

Image based on "Java Performance", page 86

Parallel GC / Parallel Old GCParallel GC / Parallel Old GC
-XX:+UseParallelGC (Young Generation)
-XX:+UseParallelOldGC (Old Generation)
High throughput, higher pause times

Image based on "Java Performance", page 86

Concurrent Mark-Sweep (CMS)Concurrent Mark-Sweep (CMS)
-XX:+UseConcMarkSweepGC
Affects only the old generation
Less throughput, smaller pause times

Image based on "Java Performance", page 88

Garbage First (G1)Garbage First (G1)
-XX:+UseG1GC
Vastly different heap layout. Intended for large heaps (>> 8
GB)
Less throughput, smaller pause times

Other GC AlgorithmsOther GC Algorithms
Very large heaps (> 100 GB)

Shenandoah (OpenJDK): Currently in alpha
C4 (Azul Zing)

Which GC am I using?Which GC am I using?
java -XX:+UnlockDiagnosticVMOptions -
XX:+PrintFlagsFinal -version | grep -E

"Use.*GC.*true"

GC TuningGC Tuning
Know your application's behavior and SLAs
Performance mantra: Measure, measure, measure
Turn the least amount of knobs (70+ GC related JVM flags)

GC TuningGC Tuning
Starting point:

-Xloggc:gc.log -XX:+PrintGCDetails -XX:+PrintGC

Use tools like for analysisGCViewer

https://github.com/chewiebug/GCViewer

Demo: Inspecting the GCDemo: Inspecting the GC
Based on by Gil TeneMinorGC demo

https://github.com/giltene/GilExamples/tree/master/MinorGC

Demo: Mostly Young-GenDemo: Mostly Young-Gen
GarbageGarbage

Demo: Mostly Young-GenDemo: Mostly Young-Gen
Garbage + 5% Object RefsGarbage + 5% Object Refs

Take AwaysTake Aways
GC helps with memory management
Different algorithms - Know their characteristics

Getting started yourselfGetting started yourself
Download the OpenJDK source code at

and dive in!
http://openjdk.java.net

http://openjdk.java.net/

SlidesSlides
http://bit.ly/jvm-deep-dive-codetalks

http://bit.ly/jvm-deep-dive-codetalks

Q & AQ & A

Image CreditImage Credit
 by (License:)

 by (License:)
 by (License:)

 by (License:)
 by (License:

)
 by (License:)

 by (License:)

-Hydra- arvalis cc by-nc-nd 3.0
Movie-Matrix-wallpaper Tony Werman cc by 2.0
Jet Dragsters J. Michael Raby cc by-nc-nd 2.0
Stop! Go! Nana B Agyei cc by 2.0
1GB DDR3 Memory Module William Warby cc by
2.0
_DSC8852 Rusty Stewart cc by nc nd 2.0
Night mechanic Ali Bindawood by-nd

None of the pictures have been modified or altered.

http://arvalis.deviantart.com/art/Hydra-466822569
http://arvalis.deviantart.com/
http://creativecommons.org/licenses/by-nc-nd/3.0/
https://www.flickr.com/photos/tt2times/2568645910/
https://www.flickr.com/photos/tt2times/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/jmr-holdit/8014284292
https://www.flickr.com/photos/jmr-holdit/
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://www.flickr.com/photos/nanagyei/8590967532
https://www.flickr.com/photos/nanagyei/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/wwarby/5026552269
https://www.flickr.com/photos/wwarby/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/rustystewart/3696712353
https://www.flickr.com/photos/rustystewart/
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://www.flickr.com/photos/aliab55/15174758674
https://www.flickr.com/photos/aliab55/
https://creativecommons.org/licenses/by-nd/2.0/

