
Make or BreakMake or Break
The Big Impact of Small Changes on Performance in JavaThe Big Impact of Small Changes on Performance in Java

ProgramsPrograms

Javaland 2015Javaland 2015
Daniel MitterdorferDaniel Mitterdorfer

comSysto GmbHcomSysto GmbH

@dmitterd@dmitterd

https://twitter.com/dmitterd

Some ingredients for fasterSome ingredients for faster
softwaresoftware

Algorithms & Data StructuresAlgorithms & Data Structures

Play TricksPlay Tricks

ComponentsComponents

Mechanical SympathyMechanical Sympathy
Coined by Martin Thompson

What's in a CPU?What's in a CPU?

That was in the (early) 80sThat was in the (early) 80s

Cache HierarchiesCache Hierarchies

PipeliningPipelining

MulticoreMulticore

ExperimentsExperiments

Hardware: x86Hardware: x86
i7-2635QM (Sandy-Bridge quad-core)

Software: JMHSoftware: JMH
The microbenchmarking framework on the JVM
In a nutshell: Add @Benchmark; JMH takes care of the rest*
perf support

Intro to JMH: Tomorrow, 13:00 in room "Quantum 2"

* ok, it's not that easy but you get the gist

man perfman perf

ExperimentsExperiments
To Prefetch or not to Prefetch?
False Sharing
Puzzling Branch Prediction

To Prefetch or not to Prefetch?To Prefetch or not to Prefetch?

Prefetching UnitPrefetching Unit
CPU speculatively loads data based on memory access patterns

Contenders: Contenders: int[]int[]
Contiguous array: Linear memory access pattern for traversal:

Contenders: Contenders: ArrayListArrayList
Linear memory access pattern for array traversal; pointer

chasing for elements:

Contenders: Contenders: LinkedListLinkedList
Nonlinear memory access pattern for traversal and elements:

Experiment SetupExperiment Setup
Task: Calculate the sum of all elements

Benchmark: SetupBenchmark: Setup
LinkedListLinkedList

@State(Scope.Benchmark)

public class PointerChasingBenchmark {

 @Param({"1024", "2048", "4096", "8192", "16384", "32768"})

 public int problemSize;

 private final List<Integer> linkedList = new LinkedList<>();

 @Setup

 public void setUp() {

 for (int idx = 0; idx < problemSize; idx++) {

 linkedList.add(idx);

 }

 }

 // ...

}

Note: the other setup methods are identical except for their type

Benchmark: Benchmark: LinkedListLinkedList
@State(Scope.Benchmark)

public class PointerChasingBenchmark {

 // .. Setup ..

 @Benchmark

 public long sumLinkedList() {

 long sum = 0;

 for (int val : linkedList) {

 sum += val;

 }

 return sum;

 }

}

Note: the other benchmark methods are identical except for
their type

ResultsResults

Why the difference?Why the difference?
Read CPU performance monitoring data with JMH's perf

profiler

Metric int[] ArrayList LinkedList

L1-dcache-loads 61 * 109 58 * 109 21 * 109

L1-dcache-load-misses
(relative to L1 cache hits)

6 % 10 % 22 %

ConclusionConclusion
Pointer indirection renders prefetching ineffective

Take Aways and SuggestionsTake Aways and Suggestions
Memory access patterns matter: Prefer linear access
Watch Oracle's work on Value Objects (JEP 169)

False SharingFalse Sharing

Experiment SetupExperiment Setup
Task: Three readers and a writer access two unrelated fields of
a shared object

BenchmarkBenchmark
@Threads(4)

public class FalseSharingMicroBenchmark {

 @State(Scope.Benchmark)

 public static class FalselySharedState {

 public long write;

 public long read;

 }

 @Group("false_sharing")

 @GroupThreads(1)

 @Benchmark

 public void produce(FalselySharedState s) {

 s.write++;

 }

 @Group("false_sharing")

 @GroupThreads(3)

 @Benchmark

 public long consume(FalselySharedState s) {

 return s.read;

 }

}

A Java Object in MemoryA Java Object in Memory

The Processor's ViewThe Processor's View

False SharingFalse Sharing

False SharingFalse Sharing

CountermeasuresCountermeasures
Field padding, e.g. with @sun.misc.Contended

BenchmarkBenchmark
@Fork(value = 5, jvmArgs = "-XX:-RestrictContended")

@Threads(4)

public class ContendedAccessMicroBenchmark {

 @State(Scope.Benchmark)

 public static class ContendedState {

 @Contended

 public long write;

 public long read;

 }

 @Group("contended")

 @GroupThreads(1)

 @Benchmark

 public void produce(ContendedState s) {

 s.write++;

 }

 @Group("contended")

 @GroupThreads(3)

 @Benchmark

 public long consume(ContendedState s) {

 return s.read;

 }

}

ResultsResults

Why the difference?Why the difference?
Read CPU performance monitoring data with JMH's perf

profiler

Metric @Contended False
Sharing

L1-dcache-loads 231 * 109 96 * 10
9

L1-dcache-load-misses (relative to L1
cache hits)

0.01 % 1.7 %

ConclusionConclusion
Increased bus traffic due to shared cache lines reduces

throughput

Take Aways and SuggestionsTake Aways and Suggestions
Sometimes, object layout matters in multi-threaded code
Use libraries like Nitsan Wakart's which implement
countermeasures

JCTools

https://github.com/JCTools/JCTools

Puzzling Branch PredictionPuzzling Branch Prediction
Credits: Example based on a Stackoverflow discussion

http://stackoverflow.com/q/11227809

Branch PredictionBranch Prediction
Keep instruction pipeline full by guessing what will be done next

Static branch prediction
Dynamic branch prediction: Based on history
Loop detector
Meta-predictor

Contenders: Contenders: int[]int[] sorted / sorted /
unsortedunsorted

Array size: 216 elements each
Array values: [0, 255] randomly distributed

Experiment SetupExperiment Setup
Task: Calculate the sum of all elements >= 128

BenchmarkBenchmark
@Benchmark

public long benchmarkSum() {

 long sum = 0;

 for (int idx = 0; idx < array.length; idx++) {

 if (array[idx] >= 128) {

 sum += array[idx];

 }

 }

 return sum;

}

ResultsResults

Why the difference?Why the difference?
Read CPU performance monitoring data with JMH's perf

profiler

Metric 0%
random

25%
random

50%
random

100%
random

branch-misses (relative to
all branches)

0.02 % 3.7 % 7.6 % 16.8 %

ConclusionConclusion
Randomly taken paths render the branch predictor useless and

stall the pipeline

Take Aways and SuggestionsTake Aways and Suggestions
Avoid branches in critical loops or...
Make them predictable by following a common branching
pattern

SummarySummary

Understand Hardware BehaviorUnderstand Hardware Behavior

MeasureMeasure

ResourcesResources
Slides: http://bit.ly/java-cpu-talk-slides

Code: http://bit.ly/java-cpu-talk-code

http://bit.ly/java-cpu-talk-slides
http://bit.ly/java-cpu-talk-code

Image CreditImage Credit
 by (License:

)
 by (License:)

 by
 (License:)

 by (License:)
 by

(License:)
 by (License:)

 by (License:)
 by (License:)

Humpty Dumpty sat on a wall... Kate Ter Haar cc-
by
Spices Adam Baker cc-by
Change the World, Obama. | Nobel Prize for Peace version
sara b. cc-by-nc-nd
Tree structure Michael Heiss cc-by-nc-sa
Hidden Card Trick Magic Macro 10-19-09 4 Steven Depolo

cc-by
Brick purist clement127 cc-by-nc-nd
Gears 2 fieldsbh cc-by-nc-sa
Cassette Tape Rolf Venema cc-by-nc-nd

https://www.flickr.com/photos/katerha/5363478928
https://www.flickr.com/photos/katerha/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/atbaker/334231611
https://www.flickr.com/photos/atbaker/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/sara/215916577
https://www.flickr.com/photos/sara/
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://www.flickr.com/photos/michaelheiss/13676675143
https://www.flickr.com/photos/michaelheiss/
https://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.flickr.com/photos/stevendepolo/4027405671/
https://www.flickr.com/photos/stevendepolo/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/clement127/12195027774
https://www.flickr.com/photos/clement127/
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://www.flickr.com/photos/fieldsphotos/181150286
https://www.flickr.com/photos/fieldsphotos/
https://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.flickr.com/photos/xrustypicturesx/3781775316
https://www.flickr.com/photos/xrustypicturesx/
https://creativecommons.org/licenses/by-nc-nd/2.0/

Image CreditImage Credit
 by (License:)

 by (License:)
 by (License:)

 by (License:
)

 (PDF)
 by (License:)

 by (License:)
 by (License:)

no title Shereen M cc-by-nc-nd
Newspaper assembly line JD Lasica cc-by-nc
no title Herman Layos cc-by-nc-sa
Week 29/52 - P52'10 William Frankhouser cc-by-
nc-nd
Intel Sandy Bridge schematic
Attention to Detail Ravenshoe Group cc-by
Microscope Night Machine Project cc-by-nc-sa
Stopwatch William Warby cc-by

https://www.flickr.com/photos/shereen84/2510599121
https://www.flickr.com/photos/shereen84/
https://creativecommons.org/licenses/by-nc-nd/2.0/
https://www.flickr.com/photos/jdlasica/6098105047
https://www.flickr.com/photos/jdlasica/
https://creativecommons.org/licenses/by-nc/2.0/
https://www.flickr.com/photos/layos/5815423174
https://www.flickr.com/photos/layos/
https://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.flickr.com/photos/wilzdezign/4811128042
https://www.flickr.com/photos/wilzdezign/
https://creativecommons.org/licenses/by-nc-nd/2.0/
http://research.engineering.wustl.edu/~songtian/pdf/intel-sandy.pdf
https://www.flickr.com/photos/ravenshoegroup/5692831233
https://www.flickr.com/photos/ravenshoegroup/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/machineproject/5162106562
https://www.flickr.com/photos/machineproject/
https://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.flickr.com/photos/wwarby/3296379139
https://www.flickr.com/photos/wwarby/
https://creativecommons.org/licenses/by/2.0/

BackupBackup

CPUCPU
Process model: i7-2635QM
Micro architecture: Sandy Bridge

CPUCPU
cat /proc/cpuinfo #processor 0-7 -> HT enabled

processor	 : 0

vendor_id	 : GenuineIntel

cpu family	 : 6

model	 	 : 42
model name	 : Intel(R) Core(TM) i7-2635QM CPU @ 2.00GHz

stepping	 : 7

microcode	 : 0x1a

cpu MHz	 	 : 800.312

cache size	 : 6144 KB

physical id	 : 0

siblings	 : 8

core id	 	 : 0

cpu cores	 : 4

apicid	 	 : 0

initial apicid	 : 0

fpu	 	 	 : yes

fpu_exception	 : yes

cpuid level	 : 13
wp	 	 	 : yes

[...]

CPUCPU
cat /proc/cpuinfo #processor 0-7 -> HT enabled

[...]

flags	 	 : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36
bogomips	 : 4001.72

clflush size	 : 64
cache_alignment	 : 64
address sizes	 : 36 bits physical, 48 bits virtual

OSOS
uname:

Linux 3.15.8-1-ARCH #1 SMP PREEMPT x86_64 GNU/Linux

	

